Lower Order Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R

نویسندگان

  • JUN HU
  • SHANGYOU ZHANG
چکیده

In this paper, we construct, in a unified fashion, lower order finite element subspaces of spaces of symmetric tensors with square-integrable divergence on a domain in any dimension. These subspaces are essentially the symmetric H(div) − Pk (1 ≤ k ≤ n) tensor spaces, enriched, for each n − 1 dimensional simplex, by (n+1)n 2 H(div) − Pn+1 bubble functions when 1 ≤ k ≤ n − 1, and by (n−1)n 2 H(div) − Pn+1 bubble functions when k = n. These spaces can be used to approximate the symmetric matrix field in a mixed formulation problem where the other variable is approximated by discontinuous piecewise Pk−1 polynomials. This in particular leads to first order mixed elements on simplicial grids with total degrees of freedom per element 18 plus 3 in 2D, 48 plus 6 in 3D. The previous record of the degrees of freedom of first order mixed elements is, 21 plus 3 in 2D, and 156 plus 6 in 3D, on simplicial grids. We also derive, in a unified way and without using any tools like differential forms, a family of auxiliary mixed finite elements in any dimension. One example in this family is the Raviart-Thomas elements in one dimension, the second example is the mixed finite elements for linear elasticity in two dimensions due to Arnold and Winther, the third example is the mixed finite elements for linear elasticity in three dimensions due to Arnold, Awanou and Winther.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Cell-Centered Discretizations for Modeling Multiphase Flow in Porous Media on General Hexahedral and Simplicial Grids

We introduce an accurate cell-centered method for modeling Darcy flow on general quadrilateral, hexahedral, and simplicial grids. We refer to these discretizations as the multipoint-flux mixed-finiteelement (MFMFE) method. The MFMFE method is locally conservative with continuous fluxes and can be viewed within a variational framework as a mixed finite-element method with special approximating s...

متن کامل

A stabilized finite element method for the Stokes problem based on polynomial pressure projections

A new stabilized finite element method for the Stokes problem is presented. The method is obtained by modification of the mixed variational equation by using local L polynomial pressure projections. Our stabilization approach is motivated by the inherent inconsistency of equal-order approximations for the Stokes equations, which leads to an unstable mixed finite element method. Application of p...

متن کامل

A family of continuously differentiable finite elements on simplicial grids in four space dimensions

A family of continuously differentiable piecewise polynomials of degree k, for all k ≥ 17, on general 4D simplicial grids, is constructed. Such a finite element space assumes full order of approximation. As a byproduct, we obtain a family of special 3D C2-Pk elements on tetrahedral grids.

متن کامل

Nearly Incompressible Linear Elasticity Using Simplicial Meshes

We present two finite element methods for simplicial meshes to approximate the solution of the problem of nearly incompressible elasticity. Although both approaches are based on mixed formulations of linear elastic equations and biorthogonal systems, one of them is nonsymmetric, and the other symmetric. An interesting feature of both approaches is that displacement-based formulations can be obt...

متن کامل

A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015